3x^2+1=19

Simple and best practice solution for 3x^2+1=19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+1=19 equation:



3x^2+1=19
We move all terms to the left:
3x^2+1-(19)=0
We add all the numbers together, and all the variables
3x^2-18=0
a = 3; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·3·(-18)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*3}=\frac{0-6\sqrt{6}}{6} =-\frac{6\sqrt{6}}{6} =-\sqrt{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*3}=\frac{0+6\sqrt{6}}{6} =\frac{6\sqrt{6}}{6} =\sqrt{6} $

See similar equations:

| 3v^2-3=18 | | a^2+5a=84 | | 25b^2-3=1 | | 1/3=-1/4u-1/5 | | 4n^2+1=26 | | n=5n+6/6n+5 | | 3(2x-4)=-3x+24 | | 25×5=6x10 | | (x-5)×5=6x10 | | 20t+2(t^2)=100 | | 6x²+1=20 | | 5+16x^2=21 | | 5(t^2)+20t=100 | | 2(t^2)+20t=100 | | 20t^2+2t=100 | | -2(x-4)+5=29 | | t^2-7t=-12.25 | | X(7+4)=-6(x+3) | | 25r^2-2=23 | | b^2+4=104 | | b^+4=104 | | x^-6=75 | | x+3=(3/2x)+2 | | 7x+x=5x | | (X+13/2)(x-13/2)=0 | | 4^x+3=51 | | X²+8x+17=0 | | 2/5x-3/1=3/2(4x-3) | | 3/4x-3=32+1/4x | | (x5)×5=10×5 | | -5×5=10x5 | | 3-9v=5+56+80v |

Equations solver categories